报告题目:Derived equivalences between one-branch extensions of “rectangles”
报告人:林亚南 教授 (厦门大学)
邀请人:白立乾
报告时间:2022年8月4日 上午9:00
报告地点:西北工业大学友谊校区勇字楼701(第一会议室)
报告摘要:In this talk,we investigate the incidence algebras arising from one-branch extensions of “rectangles”. There are four different ways to form such extensions, and all four kinds of incidence algebras turn out to be derived equivalent. We provide realizations for all of them by tilting complexes in a Nakayama algebra. As an application, we obtain the explicit formulas of the Coxeter polynomials for a half of Nakayama algebras (i.e., the Nakayama algebras $N(n,r)$ with $2r\geq n+2$). Meanwhile, an unexpected derived equivalence between Nakayama algebras $N(2r-1,r)$ and $N(2r-1,r+1)$ has been found. This is the joint work with Qiang Dong and Shiquan Ruan.
报告人简介:林亚南,厦门大学陈景润数学特聘教授,博士生导师。国务院政府特殊津贴专家,国家万人计划领军人才,教育部第四届教学名师奖,福建省杰出人民教师。教育部大学数学课程教学指导委员会成员。国家精品课程、国家优秀资源共享课程、国家线上一流课程《高等代数》负责人。主持的项目获得福建省高等教育教学成果一等奖、特等奖,全国高等教育教学成果二等奖。《数学研究》《数学文化》编委。连续主持国家自然科学基金7个面上项目。独立获得福建省科技进步二等奖,合作获得教育部自然科学一等奖。已经培养毕业博士11人,毕业硕士40人。